

Tabiá di Stanto Stefano

Introduction

Il recupero del Tabià a S. Stefano di Cadore tratta della ristrutturazione edilizia di un manufatto agricolo tipico delle dolomiti bellunesi denominato appunto tabià. Si è scelto di adattare l'edificio al nuovo uso adottando soluzioni tecnologiche integrate al fine di mantenere vivo lo spirito del luogo. Il tabià è posto in seconda linea rispetto al bordo stradale cittadino, incastonato su un terreno in pendenza a ridosso del bosco. L'edifico si trova in relazione con altri due tabià, uno posto in adiacenza sul lato ovest e uno più distante sul fianco est. L'idea di progetto è stata quella di dar vita ad un'architettura che dialoghi con il contesto e con la natura grazie alla stretta sintonia con gli elementi naturali del territorio e riducendo al contempo il proprio impatto sull'ambiente.

Design approach

L'edificio è stato pensato per essere quanto più sostenibile in termini di risparmio energetico, avendo a cuore la salvaguardia dell'aspetto formale (mantenimento della geometria originaria, ossia il tetto a due falde con orientamento est-ovest) e il principio di integrazione architettonica. Il sistema del fotovoltaico è stato quindi pensato sulla falda ovest per captare l'irraggiamento pomeridiano e per renderlo meno impattante rispetto al contesto naturale, salvaguardando l'integrità della falda più in vista, ossia quella est.

Aesthetic integration

L'edificio si sviluppa su tre livelli: uno parzialmente interrato con struttura mista in pietra e cemento, e due superiori con struttura a travi e pilastri in legno e tamponamento esterno in tavole di legno scuro. Si è scelto di utilizzare lo stesso tamponamento per la copertura non solo per garantire una continuità geometrica e volumetrica, ma anche per la eco-sostenibilità del materiale stesso. In questa copertura i pannelli fotovoltaici sono integrati come materiale di rivestimento, essendo posati in complanarità al tavolato. L'integrazione avviene anche dal punto di vista cromatico.

Energy integration

L'utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di calore, di elettricità e per il raffrescamento copre il 52,55% del totale e il 76,4% per l'ACS. Gli impianti sono così definiti: impianto termico centralizzato con pompa di calore per il riscaldamento e la produzione di acqua calda sanitaria, pompa di calore elettrica aria-acqua con compressore ad inverter, recuperatore di calore sensibile a doppio flusso ad altissima efficienza (>75%) e ventilatori con motori elettrici a basso consumo (EC), accumulo acqua tecnica da 500 litri per il riscaldamento e la produzione istantanea di ACS mediante serpentino rovescio. L'edificio può essere definito "edificio ad energia quasi zero" grazie alla combinazione tra un buon involucro termico, una particolare tenuta all'aria e il ricorso a fonti energetiche rinnovabili. Sono contemporaneamente rispettati: - Tutti i requisiti previsti dalla lettera b), del comma 2, del paragrafo 3.3 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, secondo i valori vigenti dal 1° gennaio 2019 per gli edifici pubblici e dal 1° gennaio 2021 per tutti gli altri edifici; - Gli obblighi di integrazione delle fonti rinnovabili nel rispetto dei principi minimi di cui all'allegato 3, paragrafo 1, lettera c), del decreto legislativo 3 marzo 2011, n.28.

Technology integration

La copertura è costituita dei seguenti strati, procedendo dall'interno verso l'esterno: - tavolato in larice, pannello OSB abbinato alla barriera al vapore, struttura portante in legno con interposto isolamento, strato di OSB accoppiato al telo antivento - listellatura 10x10 con interposto isolamento, strato OSB con guaina impermeabilizzante e antirumore - lamiera con doppia aggraffatura 8/10 - sistema di fissaggio tipo "solid rail k2-system" 20 mm - tavolato in larice trattato con sali I pannelli fotovoltaici utilizzano lo stesso sistema di fissaggio e assolvono la stessa funzione di protezione esterna del tavolato, essendo posati in linea con questo. Il sistema fotovoltaico è della ditta Futura sun.

Decision making

L'idea progettuale è stata quella di sviluppare dettagli costruttivi coerenti con la necessità di rispondere alle esigenze della nuova destinazione d'uso ma anche di restituire un edificio esemplare in termini di sostenibilità e risparmio energetico. Ciascun componente, dalla geometria al materiale da costruzione, dall'integrazione nel contesto urbano/rurale fino alle scelte tecnologiche, è stato pensato per la massima performance energetica ed ambientale. Particolarmente sensibile a queste tematiche, il committente ha spinto per la ricerca della massima sostenibilità.

Lessons learnt

La politica volta al miglioramento energetico degli edifici porterà ad un beneficio non solo al singolo utente ma in modo indiretto anche alla collettività, incidendo su emissioni e inquinamento urbano. Il fotovoltaico in edilizia e lo sviluppo di soluzioni pratiche di innovazione sostenibile sono le chiavi di volta nella transizione energetica.

PROJECT DATA

Project type	renovation
Building use	residential
Building construction technique	pre-industrial
Building address	via Dante Alighieri 89, Santo Stefano di Cadore

BIPV systems

Stakeholders

Main building designer

Energy Plus Project

BIPV components producer

FuturaSun Srl Riva del Pasubio 14, Cittadella (PD), Italy info@futurasun.it +39 049 5979802 https://www.futurasun.com/en/

Vista d'insieme dell'intervento di recupero

Case study author:

Eurac Research